AP BIOLOGY
EVOLUTION
Unit 1 Part 9 (Chapter 24)
Activity #13

NAME	
DATE	PERIOD

SPECIATION-Origin of Species

SPECIATION

Origin of new species

SPECIES - BIOLOGICAL CONCEPT

Population or groups of populations whose members have the potential to interbreed and produce fertile offspring

REPRODUCTIVE BARRIERS

PREZYGOTIC:

Barriers that prevent fertilization

Habitat isolation

Populations can't get together

Behavior isolation

Different mating behavior

Temporal isolation

Breed or flower at different times

Mechanical isolation

Different anatomical structures

Gametic isolation

Gametes fail to fuse; don't recognize each other

POSTZYGOTIC:

Barriers that prevent the zygote from developing into fertile offspring

Evolution Activity #13 Page 1 of 10

Reduced hybrid viability

Zygote fails to develop or reach sexual maturity

Reduced hybrid fertility

Hybrid sterile

Hybrid breakdown

Hybrid produces offspring but offspring not viable or not fertile

MODES OF SPECIATION

ALLOPATRIC	SYMPATRIC
 Populations segregated by geographic barrier Geographic barrier = ocean, mtn. Range, etc. Conditions favoring Small population at fringe Better chance gene pool already different Different selection factors Adaptive radiation - emergence of numerous species from common ancestor introduced into environment 	 New species arise within range of parent species Reproductive isolation without geographic barrier How Plants - polyploidy (multiple sets of chromosomes) Animals - group fixed on resources not used by parent population

GENETIC CHANGE

- 1. Adaptive divergence
 - 2 parts of population adapt to different environments
 - Each accumulates different gene pools
- 2. Reproductive barriers develop
 - Usually secondary to change in gene pool
 - May be side effect of sexual selection

Evolution Activity #13 Page 2 of 10

TEMPO OF SPECIATION

GRADUALISM	PUNCTUATED EQUILIBRIUM
 1 species gradually evolves into new species Represents microevolution Big changes occur through the accumulation of small changes 	 Long periods of stasis (equilibrium) punctuated by episodes of speciation Species undergo most changes when first branch from parent; then change little Species develop in spurts of rapid change Not slow and gradual

EVOLUTIONARY NOVELTIES

- Defines taxonomic groups
- Examples
 - o Wings in birds
 - o Amniotic egg in reptiles
 - o Jaws in osteichthyes
- Evolve by gradual changes in existing structures
- Existing structures co-opted to perform different functions
- Genes that control development
 - o Play major role in development of evolutionary novelty
 - o Change rate or sequence of development
 - o Change shape of adult form or basic body design
- Macroevolution
 - o Development of taxonomic groups higher than species
 - o Species selection (species that endure the longest and produce the greatest number of new species determined direction of evolutionary trend)

Evolution Activity #13 Page 3 of 10

PATTERN	DESCRIPTION
se the biological species	s concept to define <i>species</i> .
se the biological species	s concept to define <i>species</i> .
	formation of new species?
Vhat is required for the	
Vhat is required for the	formation of new species?
What is required for the What are <i>hybrids</i> ?	formation of new species? oductive barriers different from postzygotic
What is required for the What are hybrids?	formation of new species? oductive barriers different from postzygotic
What is required for the What are hybrids?	formation of new species? oductive barriers different from postzygotic

What happens during the process of speciation?

QUESTIONS:

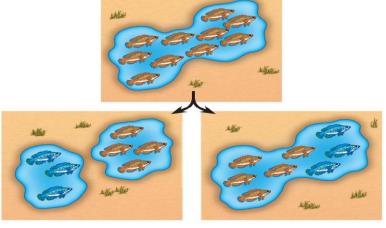
1.

Evolution Activity #13 Page 4 of 10

7.	7. Use the key below to identify the type of reproductive barrier being described.					
	A. Habitat isolation B. Temp	oral isolation C. Behavetic isolation	vioral isolation			
	Gametes fail to fuse Egg & sperm don't recognize each Differences in sexual or anatomic Mating dance of a male not recog Different mating seasons within to Members of population separated Male flowers of some members of most of the female flowers are of Variation in mating ritual not recog Male reproductive organs in insect shape, preventing the effective to species Structure of flower restricts access behavioral adaptations	n other cal structures nized by female he population by a mountain range f a plant species produce pen ognized by female ct populations vary enouge ransfer of sperm to fem	rmously in size and nales of different			
5.	Match the type of postzygotic barrio	er with the correct desc	cription.			
	A. Hybrid Breakdown B. Hybr	id Inviability C. H	ybrid Sterility			
	Zygote fails to develop; zygote fa Hybrid fails to produce functional Offspring not viable or infertile; o fertility	gametes	•			
6.	Identify the type of reproductive ba and indicate whether they are pre-	•				
	EXAMPLE	TYPE OF BARRIER	PRE- OR POST-			
	Two species of frogs are mated in the and produce viable, but sterile, offspri					
	Two species of sea urchin release the gametes at the same time, but crospecific fertilization does not occur					
	Two species of orchid have different length nectar tubes and are pollinate by different species of moths					

Evolution Activity #13 Page 5 of 10

Two species of mayflies emerge during different weeks in springtime


		EXAMPLE	TYPE OF BARRIER	PRE- OR POST
	the lab	ecies of salamanders will mate in and produce viable, fertile g, but offspring of these hybrids ile		
		nilar species of birds have t mating rituals		
	When to	wo species of mice are bred in the bryos usually abort		
	I -	breed in woodland ponds, s leopard frogs breed in		
7.		result of a cross between a donkey lly sterile.	and a horse is a mu	le. Mules are
	a.	What type of reproductive barries know?	does this represent	? How do you
	b.	Based on these results, would yo	u say that the donke	y and horse
		belong to the same species or to answer.	different species? E	xplain your
8.	What	are the limitations of the biologica	al concept of a specie	es?
9.	Matc	h the species concept with the corr	ect description.	
	Α.	3	3. Cohesion	
	C. E.	3	D. Evolutionary F. Recognition	
		fines species on the basis of the e		ay and the

Evolution Activity #13 Page 6 of 10

specific environment in which they live

				members have the potential to				
		terbreed and produce fertile						
		•		iccessful mating within a species				
			ignize a ma	ite and that can be acted on by				
		tural selection						
		sed on measurable physical						
		nphasizes adaptations that m ybridization with another spe		pecies identity despite occasional				
		efines species in terms of evo		neage and ecological role; ect to and united by a unique set				
	•	selection pressures	es are subje	ect to and united by a unique set				
24.2	Oi	selection pressures						
	Tura	groups of a nonulation are is	nolated wash	and untivials. What will amphable				
10.			•	roductively. What will probably				
	парь	ben over time provided these	groups ren	nain isolated from each other?				
4.4	N/		d = £: ;L; =					
11.	Matc	ch the term with the correct of	definition.					
	A.	Adaptive radiation	В.	Allopatric speciation				
	C.	Endemic species	D.	Sympatric speciation				
	C.	Enderme species	D.	Sympatric speciation				
	Ne	ew species arise when a pop	ulation is se	gregated by geographic barrier				
				ommon ancestor that spreads				
		nto a new environment	25 11 0111 4 20	orimion anecostor that opicado				
		ew species arise within the ra	ange of the	parent population				
		pecies found nowhere else or	_	parent population				
	s	pecies round nownere eise or	Laitii					
12.	\//bv	is the most favorable condit	ion for allor	patric enociation a small				
12.		Why is the most favorable condition for allopatric speciation a small population at the fringe of the parent population?						
	popt	diation at the inlige of the pa	irent popula	ition:				
1 2	C	a flam and had betamined the		Finalsia and store an				
13.	Gene	e flow can be interrupted in	i two main	ways. Explain and give an				

13. Gene flow can be interrupted in two main ways. Explain and give an example of each by labeling and annotating this figure, which shows an ancestral species of fish and then the two modes of speciation.

Evolution Activity #13 Page 7 of 10

eciation.
ousands c
IDY
nich had a

Evolution Activity #13 Page 8 of 10

21.	Why might sexual selection lead indirectly to reproductive isolation?
22.	Why is reproductive isolation so important in the process of speciation?
23.	What could happen if two related populations that have been allopatric for some time come back together?
24.3 24.	What is a hybrid zone?
24.4 25.	Indicate if each of the following statements is true of G radualism or P unctuated Equilibrium.
	Gradual divergence of a species from the ancestral form Most change occurred when species branched from ancestral form Long periods of stasis punctuated by episodes of speciation Darwinism Evolution occurred in spurts of rapid change Big changes occur from the accumulation of many small ones
	17. This figure shows 2 different views of speciation. Label this figure, and explain how each of the pictures explains speciation.

Evolution Activity #13 Page 9 of 10

26.	Describe what happens during species selection.

End of Chapter Synthesis and Evaluation Problems

1.	Answer questions 1-7, 11.	Then	check and	correct	your	answers to	1-7	in the
	back of text.							

1	***Question #11 should be typed out, then
2	answered in no more and no less than 100 to 150
3	words. Turn in separately to the tray. This is
4	worth 20 points ! Do not plagiarize. Use your own
5	words and thoughtsbut, use vocabulary terms
6	and ideas taught in this chapter!
_	and ideas taugite in this chapter.

Study Guide/ISN (20 points)

In your study guide book, review pages 159 to 161. In your ISN, title a page as follows: **Chapter 24 The Origin of Species Must Know!** In one color, copy down must know items listed <u>below</u> leaving space underneath to include in an different color a brief description, diagram, model, or pneumonic device that will help you study for the unit test and more importantly the AP Test in May.

Bozeman Science/ AP Biology/ISN (See Syllabus for format) (20 points each)

- 1. Speciation and extinction (Big Idea 1)
- 2. Speciation (Big Idea 1)
- 3. Analysis and evaluation of evidence (AP Biology Practices)

Evolution Activity #13 Page 10 of