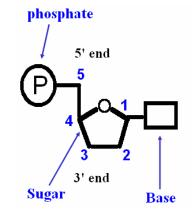
Protein Synthesis ~Biology AP~

A Meridian[®] Study Guide by David Guan, Jennifer Zheng [Edited by Lei Gong]

Introduction:

- DNA and RNA are essential for life because they code for enzymes, which regulate chemical reactions that's responsible for cell development, growth, and maintenance
- Two step process:
 - 1. transcription use of DNA to make RNA
 - 2. translation use of RNA to make proteins


Protein

	Sugar	Nitrogen Bases	Function	Structure
		adenine, thymine,	contains hereditary info of the	double
DNA	deoxyribose	guanine, cytosine	cell	helix
			mRNA - provides information for	
			assembling amino acids into	
			proteins	linear
			tRNA - helps with building	"clover-
			polypeptide chain by delivering	leaf"
			amino acids	shaped
RNA (3		adenine, uracil,	rRNA - combines with proteins to	
kinds)	Ribose	guanine, cytosine	form ribosomes	globular

DNA:

Structure

- made up of nucleotides (single unit of proteins)
- 5 carbon sugar, each of them have a number: number the carbons starting from right of oxygen and go around clockwise
- benefit is that it gives the nucleotide two ends
 - 5' end is the side closer to carbon 5
 - 3' end is the side closer to carbon 3

Complementary mRNA

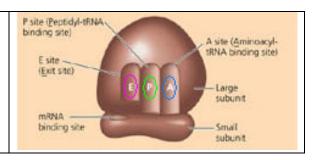
[®] Copyright© 2006 (October 26th) All rights reserved. Bio AP Study Guide v1.2 by Meridian Notes. Do not distribute or reproduce without replicating this copyright.

Nucleic Acid Structure

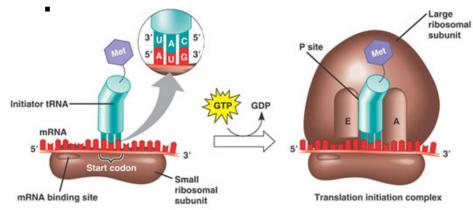
- double stranded
- hydrogen bonds occur between bases
 - \circ $% \left(adenine \ pairs \ with \ thymine \ \ causes \ two \ hydrogen \ bonds \ to \ form \$
 - $\circ\;$ cytosine pairs with guanine causes three hydrogen bonds to form
- strands are anti-parallel so that the bases can form hydrogen bonds
 - coding strand one strand runs 5' -> 3, similar to mRNA, but with thymine instead of uracil
 - template strand one strand runs 3' -> 5, the strand actually used to code for mRNA

Transcription

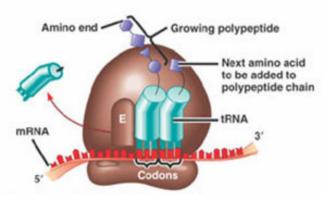
- the process of making mRNA
- Initiation
 - Start of transcription
 - RNA polymerase organizes promoter sequence on DNA and binds to promoter
 - Promoter sequences
 - In prokaryotes, RNA polymerase must find following:


coding strand		-35	-10	+1			
	DNA	5'TTGACA 3'	5' TATAAT 3'				
template strand		-35 region	<u>Pribnow</u> box	Start of RNA			
	•	the first base in the m) ymerase must find fo	,				
	Eukaryotic Promoter Site						
coding strand		-75	-25	+1			
L	NA	GGNCAATCT	TATAAT				
template strand		CAA box (not always present) N = any nucleotide	TAA box (<u>Hogness</u> box)	Start of RNA			

- Eukaryote genes can also have enhancer sequences from start site to help RNA polymerase bind
- \circ $\;$ DNA is unwound to start transcription
- Hydrogen bonds are broken
- Elongation
 - \circ $\,$ How mRNA is built $\,$


- RNA polymerase brings free nucleotides over to complement with DNA template strand and catalyzes formation of covalent bonds between RNA nucleotides to form mRNA.
- Remember that:
 - Template strand is actual strand to build mRNA
 - Coding strand has almost the same sequence as RNA but doesn't help code it (like a double check)
- Termination
 - Occurs when RNA polymerase reaches special sequence of nucleotides
 - In eukaryotes, termination region contains the DNA sequence AAAA or UUUU (or any combination of these). Why?
 - With a string of A's and U's, there are fewer bonds to hold DNA template and RNA together so they separate
 - There are only TWO hydrogen bonds between A and T/U

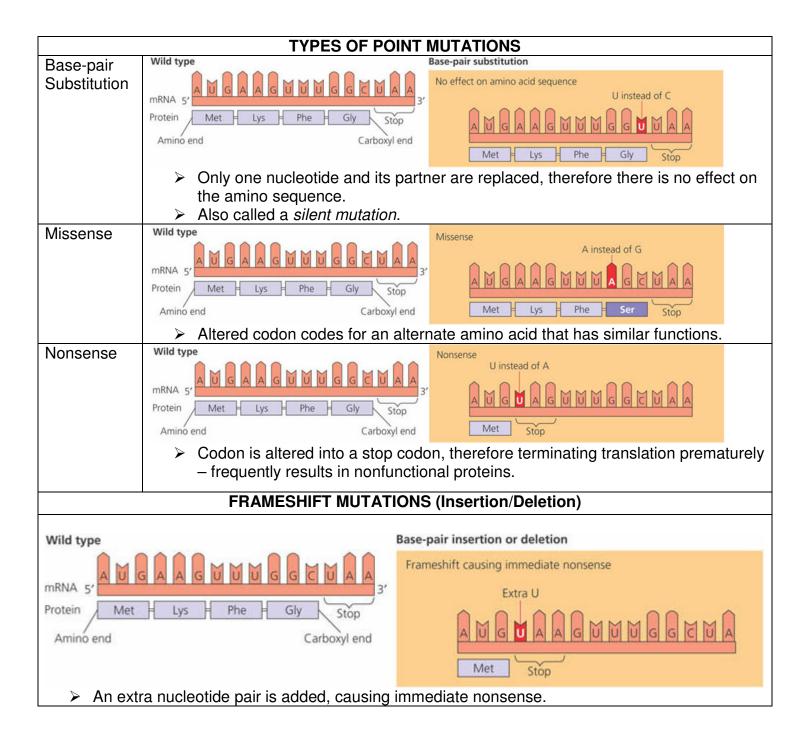
Translation

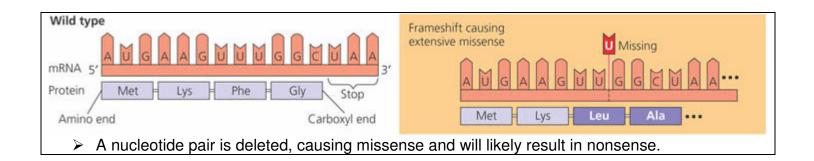

- After transcription, mRNA, tRNA, and ribosomal subunits are transported across the nuclear envelope
- using mRNA code to create appropriate protein
- occurs in cytoplasm or on rough ER
- codon is a sequence of 3 nucleotide for 64 (4³) different combinations which codes for particular amino acids (each amino acid can be coded by more than one sequence). Why not combinations of 1 or two?
 - 1 nucleotide only enough for 4 different amino acids
 - \circ 2 nucleotides only enough for 16 or (4²) amino acids
- tRNA
 - brings correct amino acid to match with mRNA codon
 - \circ each tRNA holds specific amino acid and has certain anticodon
- Ribosome
 - Made up of 2 subunits and composed of rRNA and proteins
 - Not specific to any particular protein can be used to translate any RNA into any protein
 - "workbench for translation" holds mRNA and rRNA in correct positions to assemble protein
 - o 3 sites
- The *P site* holds the tRNA carrying a polypeptide chain.
 The *A site* is the "waiting room," as
- it holds the tRNA carrying the next amino acid.
- The *E site* is the "exit" where tRNA is discharged from the ribosome.

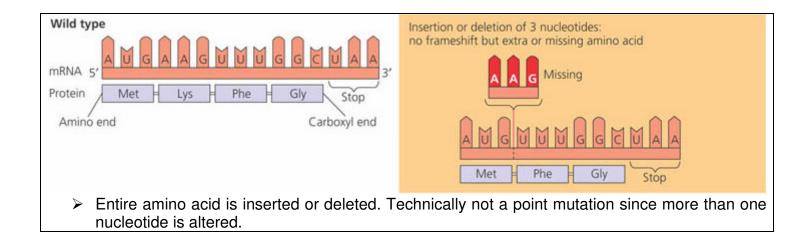
- Initiation
 - Starts when ribosomal subunit attaches to 5' end of mRNA
 - $\circ~$ Begins translating at start codon, AUG, which codes for Met amino acid
 - o **REMEMBER**
 - AUG is NOT the same as +1 start position
 - Start LOOKING for AUG after you encounter +1 start position

- Elongation
 - Ribosome moves along 5' -> 3' direction
 - When tRNA brings correct amino acid to match with mRNA codon, it forms hydrogen bonds between anticodon and codon.
 - \circ $\;$ The ribosome helps tRNA attach to codon
- Termination
 - Ribosome encounters one of the three stop codons (UAA, UAG, UGA)*
 - III Remember STOP is NOT a codonIIII DO NOT write down STOP as part of your sequence.
 - Completed polypeptide, last tRNA, and two ribosomal subunits are released
 - Release factor binds to mRNA instead

* A useful mnemonic device in the immortal words of Ms. Tsai - U Are Awful, U Are Gross, U Go Away!


PROTEIN SYNTHESIS: Prokaryotes vs. Eukaryotes


- PROTEIN TARGETTING (In Eukaryotes)
 - Signal peptide (part of protein to be bound to Signal Recognition Particle) directs secretory protein to ER
 - Ribosome translates amino acids of signal peptide
 - $\circ~$ Signal peptide is recognized by SRP and bound to it
 - Protein goes into ER as it is made.
 - $_{\odot}~$ Signal sequence is removed by enzyme in ER
- > Protein Synthesis in Eukaryotes
 - RNA processing occurs between transcription and translation
 - Pre-mRNA is modified
- 5' (G) cap is added
 - Helps mRNA bind to ribosome
 - Protects RNA from enzymes
- Poly A tail is added
 - NOT a termination sequence
 - o Stabilizes RNA


	5' 1	Protein-coding	segment	Polyadenylation signal	3'
G	-			AAUAAA	ΑΑΑ…ΑΑΑ
5′ Cap	5′ UTR	Start codon	Stop codon	3' UTR	Poly-A tail

Gene DNA Exon 2 Intron Exon Exon 1 Intron **RNA Splicing** ٠ Transcription Introns - ("Junk DNA") are cut out Exons - (coding portions) are joined together 0 **RNA** processing Translation Protein Synthesis in Prokaryotes • The absence of a nucleus allows transcription and translation to occur concurrently Polypeptide

- *Mutations* are changes in the DNA of a gene.
- **Point Mutations** are mutations that occur in just one base pair of a gene.
- *Wild Type* is the normal DNA sequence.

