Immune Response and Nervous System ~Biology AP~

A Meridian[©] Study Guide by John Ho, Amy Young, and Willy Zhang

Immune System

> Types of Immunity:

> Antigens and Pathogens:

Second Line of Defense: Types of Effector Cells		
Туре	Response	Description
Antigen	Specific	Substance that triggers the production of antibodies. It is
-		recognized by the acquired immune system. They are
		usually proteins found on the cell membrane of a pathogen.
Pathogen	Non-Specific	Any foreign object in a human body. These include viruses,
	and Specific	bacteria, or non-organic intrusions. They may contain
		proteins known as <i>antigens</i> on their membranes, which the
		immune system uses for identification.

- Non-specific: Also "Innate Immunity". Immune response that targets all pathogens with a similar response regardless of specific identity.
 - First Line of Defense: Physical or Chemical Barriers

Types Physical or Chemical Barrier				
Form	Type Description			
Lymphatic		Continuously filters the blood and interstitial fluid,		
System	All Pathogens	removing foreign particles.		
Skin and mucus		Traps or physically blocks pathogens from entering the		
coating		body.		

Second Line of Defense: Effector Cells

Second Line of Defense: Types of Effector Cells			
Form	Туре	Description	
Phagocytes	All	White blood cells (or <i>leukocytes</i>) that ingest microbes and	
		destroy them internally with lysosomes. These include:	
		✓ Neutrophils: Expend all their reserves at once after	
		ingesting the microbe, destroying the phagocyte.	
		✓ Macrophages: Envelops pathogens and digests them.	
Anti-microbial	All	Proteins that recognize pathogens through the complement	
Proteins		system [*] . Recognition begins a cascade of protein activity	
		that ultimately lyses the target cell.	

[©] Copyright[©] 2006 (April 26th) All rights reserved. Study Guide v1.0 by Meridian notes. Do not distribute or reproduce without replicating this copyright

		 Interferon: Protein secreted by virus-infected cells that slow cell processes of surrounding cells, inhibiting the spread of the virus. 	
Inflammatory Response	All	Damaged cells release <i>histamine</i> , which causes the capillaries to expand, allowing a faster transportation of	
		phagocytes to the area.	
Natural Killer	Viral and	Activated in response to the presence of <i>interferons</i> . The	
Cells	cancerous	cells release preforin, destroying the cell membrane of the	
	cells	cancerous or viral-infected cell.	

*Complement System: Method anti-microbial proteins use to identify pathogens. They include: 1) Recognition of cells marked by antibodies (antigen-antibody complex), 2) Recognition when in direct contact with pathogen, 3) Recognition of cell sugars on cell membranes of pathogens.

Specific: Also "Acquired Immunity". Response that produces antibodies that target a specific pathogen to prevent a second infection.

• Humoral Response: Production of antibodies in response to a pathogen

• B-Cells: Lymphocytes produced in the bone marrow that each have a unique antibody that will bind to a specific antigen. Floating B-Cells must find a Helper T-Cell with a matching antigen in order to differentiate.

B-Cell Differentiation		
Туре	Description	
Plasma Cells	Secrete antibodies when in contact with the specific antigen.	
	Antibodies bind to a matching antigen, making it an easier target	
	for phagocytes.	
Memory Cells	Long-living cells which can recognize a specific antigen. It will	
	quickly multiply into undifferentiated B-cells if it comes in contact	
	with the antigen, creating more plasma and memory cells.	

• Cell-Mediated Response: Utilizes Cytotic T-Cells* to eliminate 1) infected cells, 2) transplanted cells, 3) and cancerous cells. The T-Cell recognizes an infected cell and destroys it while multiplying itself.

T-Cells: Lymphocytes formed in the thymus gland that each has a specific receptor that matches a specific antigen. Differentiate into Cytotic T-Cells and Helper T-Cells.

I-Cell Differentiation		
Туре	Description	
Cytotic T-Cell	"Killer" T-cells that can recognize and destroy cells with the target	
	antigen. The release the enzyme preforin to lyse the target cell.	
Helper T-Cell	Participates in the Humoral Response (see "Humoral Response	
	Step 3"). It recognizes antigens presented by macrophages that	
	have digested the pathogen and in turn activates B-Cells.	

Primary and Secondary Response:

Primary vs. Secondary Response			
Туре	Response Description		
Primary	Humoral	The initial response to an antigen. During the response,	
		memory cells are formed with the corresponding antibody.	
Secondary	Cell-Mediated	Response to a subsequent infection of the same antigen. It	
		is carried out by memory cells and is significantly more	
	efficient than the primary.		

- > Transplant Immune Response: Transplanted cells stimulate the Cell-Mediated response.
 - Blood Types: Red blood cells are coated with 2 types of antibodies: A and B (they may have one, both, or none). The immune system attacks non-matching types of blood, leading to "agglutination", or clumping/lysing of red blood cells.

Blood Types				
Туре	Type Compatibility Description			
A A, O Has the antigen A, produces antibodies against type B.				

В	В, О	Has the antigen B, produces antibodies against type A.	
AB	All	The universal acceptor, no antibodies are produced.	
0	0	The universal donor, its red blood cells have no antibodies and the body produces both anti-A and anti-B antibodies.	

Immune System Disorders:

Disorders in the Immune System			
Disorder	Туре	Description	
Allergies	Overreaction	Occurs when the immune system becomes overly sensitive to certain antigens. The effects are produced by the release of histamine; treatment usually involves administering anti- histamines to block the response.	
Lupus		Systemic lupus erythematosus or SLE is a chronic disease that causes the immune system to attack the body's tissues. Commonly affected areas include the kidney and the lungs.	
Rheumatoid		A chronic disease that causes the immune system to attack	
Arthritis	Autoimmune	the bone joints of the body. The disease also affects the	
	Disorders skin, blood vessels, heart, lungs, and muscles.		
Diabetes (type I)		The body destroys B-cells in the pancreas. This reduces	
		production of insulin. This is different from Type II diabetes	
		where the body becomes resistant to insulin.	
Multiple		Chronic disease affecting the brain and spinal cord. Multiple	
Sclerosis		Sclerosis specifically attacks neurons by slowly destroying	
		the myelin sheath that protects them.	
Acquired	Immune	The HIV (Human Immunodeficiency Virus) damages the	
Immune	Deficiency	immune system and leaves the patient susceptible to	
Deficiency		infections or other viruses that are normally easily	
Syndrome (AIDS)		countered by any healthy immune system.	

> The ELISA Test:

What is it?	Enzyme-linked Immunosorbent Assay (ELISA) is a technique to detect the presence of any specific disease antibody. It is most often used to determine the antibody count in serum or just to
	detect the presence of an antigen.
How does it work?	An antibody is a protein of the immune system that destroys antigens in the body. Each antibody created only recognizes one specific antigen, which is how ELISA detects the antibody presence. Biologically made anti-antigens are created to bind to the specific antigen present and release colors for a positive bind.

Nervous System

> Neuron Structure:

Resting Potential: Neurons at rest maintain a difference in voltage (-70 mV). The charge is the neuron's "ready position", where it can transmit an electrical pulse. It is at this stage polarized.

Relative Ion Concentrations				
Ion Inside Outside				
Na⁺	Low	High		
CL	High	Low		
K ⁺	Equal	Equal		

• Maintaining Negative Charge: Membrane permeability and the Sodium/Potassium pump maintain a balance of ions that creates the negative charge of -70 mV.

Creating the Resting Potential		
Туре	Overall	Description
	Charge	
Na⁺	Positive (+)	Cell membrane holds Na ⁺ until depolarization (see "Action
		Potential") in while the pump draws additional Na+ ions.
		Creates higher concentration of Na ⁺ in the outside.
CI	Negative (-)	Enters and exits at a controlled rate, contributes to the
		negative interior.
K⁺	None (0)	K+ is drawn in during the pumping process but is allowed to
		escape through the membrane. It maintains an equilibrium
		with the outside, not raising the charge of the neuron.

Saltatory Conduction: Nerve impulse travels down the axon through transfer of action potential. The myelin sheath prevents ions from flowing outwards, allowing polarization at one Node of Ranvier to raise the voltage of surrounding cells into action potential.

✓ Node of Ranvier: Gaps along the myelin sheath that are not insulated. The electrical pulse jumps from one node to the other rather than to smoothly progress.

> Neuron Communication:

• Sending the Signal: Signal reaches the axon terminal (see "Neurons" diagram) and is transferred to another neuron.

• Elimination of Neurotransmitters: Cell must recycle the chemical signals after they move across the synaptic cleft to prevent them from stimulating the signal again.

Eliminating Neurotransmitters		
Туре	Description	
Diffusion	Chemicals diffuse away into low concentrations and are eventually	
	broken down by proteases (enzymes).	
Reuptake	Postsynaptic cell absorbs the transmitters where it is recycled and	
	used again.	
Enzyme Degradation	Once the transmitter reaches the other side of the cleft, enzymes	
	near the membrane digest it.	
	The arrest the method and ungest it.	

✓ Blocked Transmitters: If the receptor is blocked, neurotransmitters are forced into the bloodstream.