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Hardy-Weinberg Principle 

In 1908, two scientists, Godfrey H. Hardy, an English mathematician, and Wilhelm Weinberg, a German               

physician, independently worked out a mathematical relationship that related genotypes to allele frequencies. 

Their mathematical concept, called the Hardy-Weinberg principle, is a crucial concept in population genetics.              

It predicts how gene frequencies will be inherited from generation to generation given a specific set of                 

assumptions. The Hardy-Weinberg principle states that in a large randomly breeding population, allelic frequencies              

will remain the same from generation to generation assuming that there is no mutation, gene migration, selection                 

or genetic drift. This principle is important because it gives biologists a standard from which to measure changes in                   

allele frequency in a population. 

The Hardy-Weinberg principle can be illustrated mathematically with the 

equation: 

 
p2+2pq+q2 = 1 

Where ‘p’ and ‘q’ represent the frequencies of alleles. It is important to note that p added to q always equals 

one (100%). p + q = 1 

To illustrate how the Hardy-Weinberg principle works, let us consider the MN blood group. Humans inherit                

either the M or the N antigen which is determined by two different alleles at the same gene locus. If we let the                       

frequency of allele M=p and the frequency of the other allele N=q, then the next generation's genotypes will occur                   

as follows: 

● Frequency of homozygous MM genotype = p2 

● Frequency of heterozygous MN genotype = 2pq 

● Frequency of homozygous NN genotype = q2 

We can take a sample of the population and count the number of people with each genotype. For example, a                    

sample of 5000 from Forensic Town, USA, has: 

● 1460 individuals of type MM, that is 1460/5000 or 29.2% 

● 2550 of type MN, that is 2550/5000 or 51% 

● 990 of type NN, that is 990/5000 or 19.8% 

If we apply the Hardy-Weinberg equation (p2 + 2pq + q2 = 1) we can calculate the allele frequencies as: 

● Frequency of M = p =  = 0.540√0.292  

● Frequency of N = q = 1 - p = 1 - 0.540 = 0.460 

 



We can now calculate our expected genotype frequencies: 

● MM = p2 = 0.292, or 1460 individuals in the sample 

● MN = 2pq = 2 x 0.540 x 0.460 = 0.4968, or 2484 individuals 

● NN = q2 = 0.2116, or 1058 

When a population meets all of the of the Hardy-Weinberg conditions, it is said to be in Hardy-Weinberg                  

equilibrium (HWE). Human populations do not meet all of the conditions of HWE exactly, and their allele                 

frequencies will change from one generation to the next and the population will evolve. How far a population                  

deviates from HWE can be measured using the “goodness of fit” or chi-squared test (χ2). 

Mathematically the chi-squared test is represented:  

χ2 = Σ [(observed value – expected value)2 / expected value] 

Applying the above data to the chi-square test gives: 

● χ2 = [(990 - 1058)2 / 1058]  + [(2550 – 2484)2 / 2484]  + [(1460-1460)2 / 1460] 

● χ2 = [4624 / 1058] + [4356/ 2478] + [0 / 1460] 

● χ2 = [4.371] + [1.754] + [0] = 6.125 

To determine what this chi-squared value means, we must next look at a chi-squared distribution table. 

 

Since we have three genotypes, we therefore have 3 minus 1, or 2 degrees of freedom. Degrees of freedom                   

is a complex issue, but we could look at this in simple terms: if we have frequencies for three genotypes that are                      

truly representative of the population then, no matter what we calculate for two of them, the frequency of the third                    

must not be significantly different for what is required to fit the population. 

Looking across the distribution table for 2 degrees of freedom at 0.05 p (95% confidence), we find our                  

chi-squared value of 6.125 contradicts the hypothesis that the differences in the Observed and Expected data did                 

not arise by chance. Since the chi-squared value falls above the 0.05 (5%) significance cutoff, we can conclude                  

that the Forensics Town population differs significantly from what we would expect for a Hardy-Weinberg               

equilibrium of the MN blood group. This means that the population is evolving due to not conforming to one of the                     

conditions that are assumed in Hardy-Weinberg.  ie: is no mutation, gene migration, selection or genetic drift 

 



Example 
Determining Hardy-Weinberg Equilibrium 

Suppose that scientists are observing a population of lab-bred flies, and discover a gene controlling eye color.                 

The R allele produces regular-colored eye pigment, while the r allele produces red pigment. Individuals that are                 

heterozygous (Rr ) have pink eyes. In a population of 150 flies, 15 flies have red eyes, 90 have normal eye color,                     

and 45 have pink eyes. 

Is this population in Hardy-Weinberg equilibrium? 

In order for a population to be considered to be in equilibrium, it must remain the same from generation to                    

generation. Therefore, in order to determine if this population of fruit flies is in Hardy-Weinberg equilibrium, the                 

genetic distribution of the current generation must be compared to a prediction of the genetic distribution of the                  

next generation, as calculated using the Hardy-Weinberg equation. 

Step 1: Determine the gene frequencies of the current generation. 

Phenotype Genotype # of Individuals 

Normal Eyes RR 90 

Red Eyes rr 15 

Pink Eyes Rr 45 

Given this information, calculating the allele frequencies is simply a matter of counting up all of the alleles. 

● Remember, each parent carries two  alleles, so the total # of alleles is twice the population. 

● Also remember that heterozygous  individuals carry one of each  allele. 

Taking these two factors into account, 

f(R) = [(90 x 2) + (45)] / (150 x 2) = 225/300 = 0.75 = p 

[(90 RR x 2 - one for each R) + (45 Rr - not multiplied by 2 since only 1 of the alleles is R)]/ 150 (total                           

number of flies) x 2 (because each fly has two alleles) = 0.75  

f(r) = [(15 x 2) + (45)] / (150 x 2) = 75/300 = 0.25 = q 

[(15 rr x 2 - one for each r) + (45 Rr - not multiplied by 2 since only one of the alleles is r)]/ 150 (total                           

number of flies) x 2 (because each fly has two alleles) = 0.25 

 

Step 2: Determine the expected genotype frequencies for the next generation. 



Plugging the frequencies of each allele into the Hardy-Weinberg equation, we find the expected numbers of                

each genotype in the population: 

f(RR) = p2 =  f(R) x f(R) = 0.75 x 0.75 = 0.5625  

f(rr) = q2 =  f(r) x f(r) = 0.25 x 0.25= 0.0625 

f(Rr) = 2pq = 2 x [f(R) x f(r)] = 2 x (0.75 x 0.25) = 0.375 

Multiplying each of these genotype frequencies with the total population number, we find that there should be: 

● 0.5625 x 150 = 84 normal-eyes flies (RR )  

● 0.0625 x 150 = 9 red-eyed flies (rr ) 

● 0.375 x 150 = 56 pink-eyed flies (Rr ) 

(Since partial individuals do not exist, the numbers are rounded off.) 

Step 3: Compare the expected frequency with the original population numbers. 

Comparing the expected numbers with the actual numbers of each phenotype, population geneticists can              

determine if populations are either in equilibrium (or very close to it) or are experiencing disequilibrium of some                  

sort. In this example: 

Phenotype Genotype Expected # Observed # 

Normal Eyes RR 84 90 

Red Eyes rr 9 15 

Pink Eyes Rr 56 45 

In this example, the population is not in equilibrium since the expected and observed values do not match.                  

Once a population geneticist determines that a population is in disequilibrium, the reasons can be explored.                

Disequilibrium can be attributed to different possible mechanisms, depending on (1) the context of the population,                

and (2) the manner in which the population is skewed. 

 

 

 

 

 



Step 4: Chi-Squared Test 

χ2 = Σ [(observed value – expected value)2 / expected value] 

X2 = [(90-84)2 / 84)] + [(15-9)2 / 9)] + [(45-56)2 / 56] 

X2 = [36/84] + [36/9] +[121/56] 

X2 = [0.429] + [4] + [2.161] = 6.59 

 

Since we have three genotypes, we therefore have 3 minus 1, or 2 degrees of freedom. Degrees of freedom                   

is a complex issue, but we could look at this in simple terms: if we have frequencies for three genotypes that are                      

truly representative of the population then, no matter what we calculate for two of them, the frequency of the third                    

must not be significantly different for what is required to fit the population. 

Looking across the distribution table for 2 degrees of freedom at 0.05 p (95% confidence), we find our                  

chi-squared value of 6.59 contradicts the hypothesis that the differences in the Observed and Expected data did                 

not arise by chance. Since the chi-squared value falls above the 0.05 (5%) significance cutoff, we can conclude                  

that the Fly population differs significantly from what we would expect for a Hardy-Weinberg equilibrium of the eye                  

color. This means that the population is evolving due to not conforming to one of the conditions that are assumed                    

in Hardy-Weinberg.  ie: is no mutation, gene migration, selection or genetic drift 

 

 


