AP BIOLOGY EQUATIONS AND FORMULAS

Statistical Analysis and Probability			
Mean Standard Deviation*	$\overline{x} = $ sample mean		
$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ $S = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$ Standard Error of the Mean* $Chi-Square$ $SE_{n-1} = \sum_{i=1}^{n} (x_i - \overline{x})^2$	<pre>n = size of the sample s = sample standard deviation (i.e., the sample-based estimate of the standard deviation of the population)</pre>		
$\Sigma L_{\overline{\chi}} = \sum \frac{\langle \sigma - c \rangle}{e}$	o = observed results		
Chi-Square Table	e = expected results		
p Degrees of Freedom value 1 2 3 4 5 6 7 8 0.05 3.84 5.99 7.82 9.49 11.07 12.59 14.07 15.51 0.01 6.64 9.21 11.34 13.28 15.09 16.81 18.48 20.09	Degrees of freedom are equal to the number of distinct possible outcomes minus one.		
Laws of Probability	Metric Prefixes		
If A and B are mutually exclusive, then:			
P(A or B) = P(A) + P(B)	<u>Factor Prefix Symbol</u>		
If A and B are independent, then:	10 ⁹ giga G		
$P(A \text{ and } B) = P(A) \times P(B)$	10 ⁶ mega M		
Hardy-Weinberg Equations	10 ³ kilo k		
$n^2 + 2na + a^2 = 1$ $n =$ frequency of the dominant allele	10 ⁻² centi c		
in a population	10 ⁻³ milli m		
p + q = 1 $q =$ frequency of the recessive allele in a population	10^{-6} micro μ		
	10^{-9} nano n		
	10 ⁻¹² pico p		
Mode = value that occurs most frequently in a data set			

Median = middle value that separates the greater and lesser halves of a data set

Mean = sum of all data points divided by number of data points

Range = value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

* For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.

Rate and Growth	dY = amount of change		Water Potential (Ψ)
$\frac{\mathbf{Rate}}{dY}$	dt = change in time		$\Psi = \Psi_{\rm p} + \Psi_{\rm S}$
$\frac{dt}{dt}$	B = birth rate		$\Psi_{\rm p} = {\rm pressure potential}$
Population Growth	B = birth rate		- p rr
$\frac{dN}{dt} = B - D$	D = death rate		$\Psi_{\rm s}$ = solute potential
Exponential Growth	N = population size		The water potential will be equal to the solute potential of a solution in an
$\frac{dN}{dt} = r_{\max}N$	K = carrying capacity		open container because the pressure
Logistic Growth	$r_{\text{max}} = $ maximum per capita growth rate of population		container is zero.
$\frac{dN}{dt} = r_{\max} N\left(\frac{K-N}{K}\right)$	T_2 = higher temperature		The Solute Potential of a Solution $\Psi_s = -iCRT$
<u>Temperature Coefficient Q_{10}^{\dagger}</u>	T_1 = lower temperature k_2 = reaction rate at T_2		<i>i</i> = ionization constant (this is 1.0 for sucrose because sucrose does not ionize in water)
$Q_{10} = \left(\frac{k_2}{k_1}\right)^{\frac{10}{T_2 - T_1}}$			
Primary Productivity Calculation	k_1 = reaction rate at T_1 Q_{10} = the factor by which the reaction rate increases when the temperature is raised by		C = molar concentration
$\frac{\text{mg } \text{O}_2}{\text{L}} \times \frac{0.698 \text{ mL}}{\text{mg}} = \frac{\text{mL } \text{O}_2}{\text{L}}$			R = pressure constant ($R = 0.0831$ liter bars/mole K)
$\frac{\text{mL O}_2}{\text{L}} \times \frac{0.536 \text{ mg C fixed}}{\text{mL O}_2} = \frac{\text{mg C fixed}}{\text{L}}$			T = temperature in Kelvin (°C + 273)
(at standard temperature and pressure)	ten degrees		
Surface Area and Volume	r = radius	Dilution (use	to create a dilute solution from a
Volume of a Sphere		concentrated stock solution)	
$\frac{1}{V = \frac{4}{2}\pi r^3}$	l = length	$C_i V_i = C_f V_f$	
Volume of a Rectangular Solid	h = height		
V = lwh	w = width	i = initial (star	ting) $C = $ concentration of solute
Volume of a Right Cylinder	s = length of one	f = final (desired) $V = volume of solution$	
$V = \pi r^2 h$	side of a cube		
Surface Area of a Sphere	4	Gibbs Free Energy	
$A = 4\pi r^2$	A = surface area	$\Delta G = \Delta H - T \Delta S$	
Surface Area of a Cube	V = volume	volume $\Delta G =$ change in Gibbs free energy	
$A = 6s^2$	$\Sigma = \text{sum of all}$ $\Delta S = \text{change in entropy}$		
Surface Area of a Rectangular Solid		ΔH = change in enthalpy	
$A = \sum$ surface area of each side		T = absolute temperature (in Kelvin)	
		$pH^* = -\log_{10}$	[H ⁺]

* For the purposes of the AP Exam, students will not be required to perform calculations using this equation; however, they must understand the underlying concepts and applications.

[†] For use with labs only (optional).