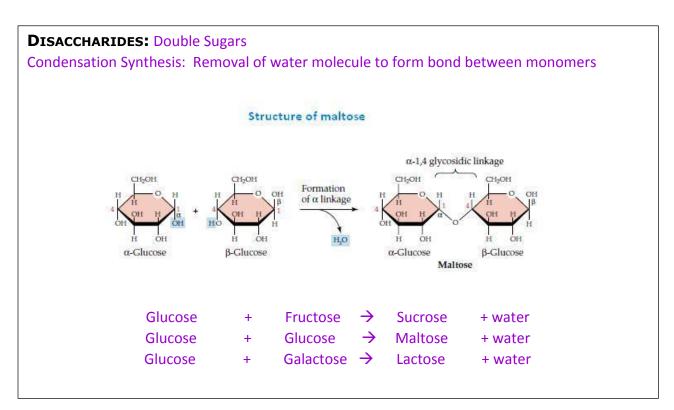
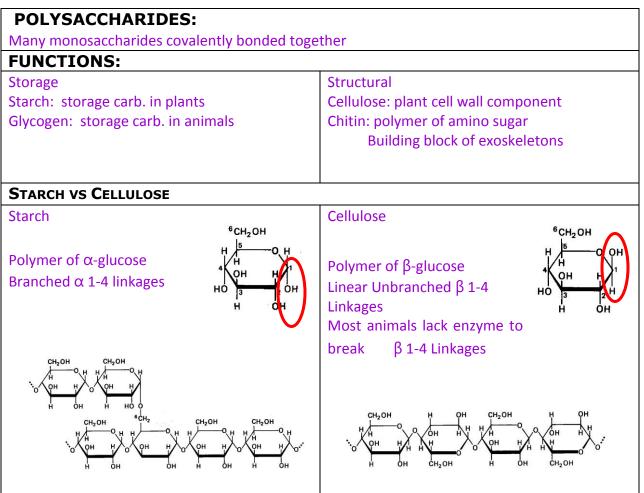

AP BIOLOGY	
BIOCHEMISTRY	
UNIT 2 Part 4 ACTIVITY #4 (Chapter	5)


NAME			


DATE PERIOD

CARBOHYDRATES

QUESTIONS:

5.1

1. The large molecules of all living things fall into just four main classes. Name them.

2. Define Macromolecule

Define the following: 3.

Polymer	
Monomer	

4. Match the definition with the correct term.

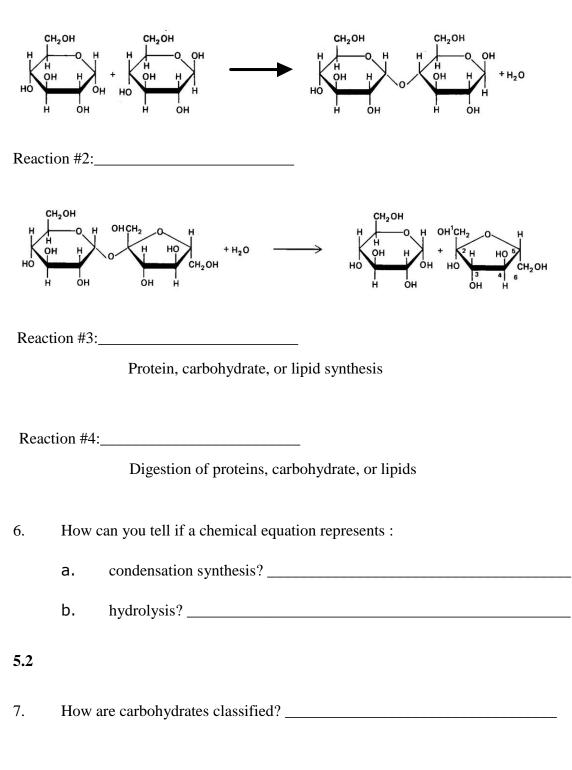
- A. Condensation Synthesis
- D. Polymer

B. Hydrolysis

E. Polymerization

C. Monomer

_____ Large molecule that consists of many subunits called monomers

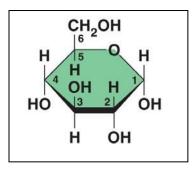

- _____ Identical or similar subunits of a polymer
- _____ Process of linking monomers to form a polymer
- Loss of a water molecule between two monomers to form a covalent bond between the monomers

_____ Breaking the covalent bond between monomers by adding a water molecule

_____ AKA dehydration synthesis

5. Indicate if each of the following is an example of condensation synthesis or hydrolysis.

Reaction #1:_____


- 8. Let's look at carbohydrates, which include sugars and starches. First, what are the monomers of all carbohydrates?
- 9. Match the description with the correct term.
 - A. Disaccharides D. Monosaccharides
 - B. Lactose
- E. Polysaccharides
- C. Maltose F. Sucrose
- General term used to describe a molecule that consists of 2 simple sugars covalently bonded General term used to describe a molecule that consists of 100s or 1000s of simple sugars
- covalently bonded
- _____ Molecule that consists of 2 glucose molecules covalently bonded
- _____ Molecule that consists of a glucose and a galactose covalently bonded
- _____ Molecule that consists of a glucose and a fructose covalently bonded
- 10. Identify each of the following as a Monosaccharide, a Disaccharide, or a Polysaccharide.

Sucrose	Maltose
Glucose	Galactose
Ribose	Lactose
Chitin	Deoxyribose
Starch	Glyceraldehyde
Glycogen	Amylose
Cellulose	Amylopectin
Fructose	

- 11. Listed below are characteristics of four biologically important polysaccharides. Use the key below to indicate the polysaccharide described in each characteristic
 - A. CelluloseB. ChitinD. Starch

Polymer of an amino sugar	Storage Polysaccharide in plants
Linear and unbranched	Component of plant cell walls
Branched	Forms the exoskeleton in arthropods; Building material of cell walls of some fungi
Storage polysaccharide in animals	

- 12. So, as a quick review, all of these sugars have the same chemical formula: $C_6H_{12}O_6$. What term did you learn in Chapter 3 for compounds that have the same molecular formulas but different structural formulas?
- 13. Here is the abbreviated ring structure of glucose. Where are all the carbons? (Use arrows to show)

14. Consider this reaction: $C_6H_{12}O_6 + C_6H_{12}O_6 \Leftrightarrow C_{12}H_{22}O_{11} + H_2O$

Notice that two monomers are joined to make a polymer. Since the monomers are monosaccharides, the polymer is a *disaccharide*. Three disaccharides are important to us with the formula $C_{12}H_{22}O_{11}$. Name them below and fill out the chart.

Disaccharide	Formed from which two monosaccharides?	Found where?

15. Have you noticed that all the sugars end in *-ose*? This root word means ______.

16. There are two categories of *polysaccharides*. Name them and give examples.

17. Draw a glycosidic linkage between two glucose molecules.

- 18. Why can't the human digestive system break down cellulose?
- 19. Let's review some key points about the carbohydrates. Each prompt below describes a unique carbohydrate. Name the correct carbohydrate for each.
 - a. Has _____ linkages
 - b. Is a______ polysaccharide produced by vertebrates; stored in your liver
 - c. Two monomers of ______ form maltose
 - d. Glucose +_____ form sucrose
 - e. Monosaccharide commonly called "fruit sugar" _____
 - f. "Milk sugar" _____
 - g. Structural polysaccharide that gives cockroaches their crunch
 - h. Malt sugar; used to brew beer
 - i. Structural polysaccharide that comprises plant cell walls

End of Chapter Synthesis and Evaluation Problems

Do problems 1-2, 6. Check and correct your answers 1-2 and 6 in back of the text.

- 1._____ 2.____
- 6._____

Study Guide/ISN (20 points)

In your study guide, review pages 38-39 Carbohydrates. In your ISN, do the following: Title the page **Chapter 5 Carbohydrates Must know!** In one color, copy down the first three must knows listed on page 38. **NOTE:** Must know 2 and 3 should focus on carbohydrates only!!! In another color in the space underneath include a brief description, diagram, model or mnemonic devise that will help you study for the unit test and more importantly the AP Test in May.

Bozeman/Podcasts/AP Biology/ISN (See syllabus for format) (20 points each)

- 1. Bozeman Biological Molecules (big idea 4 systems)
- 2. Bozeman Carbohydrates (big idea 4 systems)

Unit 2 Part 4 Biochemistry Activity #5