NAME	
,	

WATER, ACIDS, BASES, BUFFERS

STRUCTURE AND GEOMETRY OF WATER:
Water is polar
$\mathbf{H} = 0 0 0 0 0 0 0 0$
Maximum number of H bonds = 4 Each water molecule can form a max. of 4 hydrogen bonds with 4 other water molecules
δ- Hydrogen Bond
δ^+ δ^+ δ^+ δ^+
δ-

PROPERTIES OF WATER:

Liquid water is cohesive

Cohesion = H bonds between water molecules; H₂O molecules tend to stick together.

Importance = Transport H₂O against gravity in plants
Higher surface tension

Water has a high specific heat

Takes a lot of energy to raise 1 gram of H₂O 1 °C

Why? Must break H bonds

Liquid H₂O can absorb large amounts of heat with small changes in temperature

Water has a high heat of vaporization

Takes a lot of energy to convert liquid H₂O into vapor

Why? Must break H bonds

Keeps water in liquid state

Water expands with it freezes

Solid H₂O is less dense than liquid H₂O

Why? In solid state H₂O locked into max. number of H bonds; takes up more space

Water is a versatile solvent

Will dissolve polar covalent and ionic compounds

DISSOCIATION OF WATER:

$$H_2O + H_2O \longleftrightarrow H_3O^+ + OH-$$

$$H_2O$$

Hydronium ion Hydroxide ion

1 out of 554,000,000 water molecules dissociates

At equilibrium in pure water at 25°C

$$[H+] = [OH-] = 1.0 \times 10^{-7} M$$

If add [H+] to pure water

Removes OH-

Equilibrium shifts left

[H+] > [OH-]

If add [OH-] to pure water

Removes H+

Equilibrium shifts right

[OH-]>[H+]

reduces H+ indirectly

If add NH₃

 $NH_3 + H+ \rightarrow$

NH₄+

Reduces H+ directly

PH SCALE:

$$pH = -log_{10}[H+]$$

if
$$[H+] = 10^{-7}$$

then
$$pH = 7$$

$$[H+] \times [OH-] = 10^{-14}$$

If
$$[H+] = 10^{-9}$$

Then
$$[OH-] = 10^{-5}$$

$$pOH=5$$
 and $pH=9$

Buffers:			
Description	Function	Importance	
Weak acids or bases	Minimize changes in pH	Controls chemical reactions Maintains homeostasis	

BICARBONATE BUFFER SYSTEM:

$$H_2O + CO_2 \leftarrow \rightarrow H_2CO_3 \leftarrow \rightarrow HCO_3^- + H^+$$

 HCO_{3} - = Bicarbonate (weak base) $H_{2}CO_{3}$ = Carbonic acid (weak acid)

Major buffer system in blood Maintains blood pH between 7.38 and 7.42

Action:	Effect:
Increase [H+]	Increase [H+]
How?	Equilibrium shifts left
Fat	$H+ + HCO_3- \rightarrow H_2CO_3 \rightarrow CO_2 + H_2O$
metabolism	Increase [CO ₂]
OD on acidic drug	Increase rate and depth of respiration
Increase Rate & Depth of Respiration	Decrease [CO ₂]
	Equilibrium Smits left
Hyperventilate	$H+ + HCO_3- \rightarrow H_2CO_3 \rightarrow CO_2 + H_2O$
	Blood pH increases

QUESTIONS: 3.1 1. Explain why water is a polar molecule. 2. Explain how water is able to form 4 hydrogen bonds. Add + and – signs to indicate the charged regions of each water molecule above. Then, indicate the 3. hydrogen bonds. 3.2 List the 5 emergent properties of water. 4. 5. Define the following terms. Cohesion

Adhesion

Wha	t is the biological importance of water's cohesive and adhesive properties?
Why	does water have a greater degree of surface tension than most other liquids?
Why	does water have a high specific heat?
Wha	t is the biological importance of water's high specific heat?
Why	does water have a relatively high heat of vaporization?
Wha	t is the biological importance of water's relatively high heat of vaporization?

What is the biological importance of the expansion of water when it freezes? Match the description/definition with the correct term. A. Aqueous solution D. Solute B. Hydrophilic E. Solution C. Hydrophobic F. Solvent Homogenous mixture of 2 or more substances _ Dissolving agent _ Material being dissolved _ Solution where water is solvent _ Water loving; molecules with an affinity for water _ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent? In general, what kinds of materials will not dissolve in water?	•	Why does water expand when it freezes?
What is the biological importance of the expansion of water when it freezes? Match the description/definition with the correct term. A. Aqueous solution D. Solute B. Hydrophilic E. Solution C. Hydrophobic F. Solvent _ Homogenous mixture of 2 or more substances _ Dissolving agent _ Material being dissolved _ Solution where water is solvent _ Water loving; molecules with an affinity for water _ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?	-	
Match the description/definition with the correct term. A. Aqueous solution D. Solute B. Hydrophilic E. Solution C. Hydrophobic F. Solvent _ Homogenous mixture of 2 or more substances _ Dissolving agent _ Material being dissolved _ Solution where water is solvent _ Water loving; molecules with an affinity for water _ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?	1	Why does ice float?
A. Aqueous solution D. Solute B. Hydrophilic E. Solution C. Hydrophobic F. Solvent Homogenous mixture of 2 or more substances Dissolving agent Material being dissolved Solution where water is solvent Water loving; molecules with an affinity for water Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?	,	What is the biological importance of the expansion of water when it freezes?
A. Aqueous solution D. Solute B. Hydrophilic E. Solution C. Hydrophobic F. Solvent _ Homogenous mixture of 2 or more substances _ Dissolving agent _ Material being dissolved _ Solution where water is solvent _ Water loving; molecules with an affinity for water _ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?	_	
B. Hydrophilic E. Solution C. Hydrophobic F. Solvent _ Homogenous mixture of 2 or more substances _ Dissolving agent _ Material being dissolved _ Solution where water is solvent _ Water loving; molecules with an affinity for water _ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?	ľ	Match the description/definition with the correct term.
C. Hydrophobic F. Solvent _ Homogenous mixture of 2 or more substances _ Dissolving agent _ Material being dissolved _ Solution where water is solvent _ Water loving; molecules with an affinity for water _ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?	ļ	A. Aqueous solution D. Solute
_ Homogenous mixture of 2 or more substances _ Dissolving agent _ Material being dissolved _ Solution where water is solvent _ Water loving; molecules with an affinity for water _ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?		• •
_ Dissolving agent _ Material being dissolved _ Solution where water is solvent _ Water loving; molecules with an affinity for water _ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?	(C. Hydrophobic F. Solvent
_ Material being dissolved _ Solution where water is solvent _ Water loving; molecules with an affinity for water _ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?	_	Homogenous mixture of 2 or more substances
_ Solution where water is solvent _ Water loving; molecules with an affinity for water _ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?		Dissolving agent
_ Water loving; molecules with an affinity for water _ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?	_	Material being dissolved
_ Water fearing; molecules that do not have an affinity for water Why is water a versatile solvent?	_	Solution where water is solvent
Why is water a versatile solvent?		Water loving; molecules with an affinity for water
		Water fearing; molecules that do not have an affinity for water
In general, what kinds of materials will not dissolve in water?	1	Why is water a versatile solvent?
In general, what kinds of materials will not dissolve in water?	_	
in general, what kinds of materials will not dissolve in water:	-	n general, what kinds of materials will not dissolve in water?
	Ι	In general, what kinds of materials will not dissolve in water?

. What is the [H	+]?		
ach of the following	will affect the equilibri	um established in pure	e water during the disso
Addition of:	Effect on [H ⁺]	Effect on [OH ⁻]	Direction Equilibrium Shifts
H_2SO_4			
КОН			
			_
A neutral solutAn acidic solutA basic solutio	mpare to the [OH] in e ion: tion:		
How does the [H ⁺] con A neutral solut An acidic solut	ion: tion: on:		
How does the [H ⁺] cond. A neutral solute. An acidic solute. A basic solution. Complete the following.	ion:iion:iion:iion:iion:iion:iion:iion:iion:iion:iion: _		
How does the [H ⁺] condition. A neutral solution. An acidic solution. A basic solution. [H ⁺]	ion:iion:iion:iion:iion:iion:iion:iion:iion:iion:iion: _		
How does the [H ⁺] condition. A neutral solution. An acidic solution. A basic solution. [H ⁺]	ion:iion:		

22.	. A patient has been vomiting for a prolonged period of time.		
	a.	What effect would this have on the [H ⁺] in the blood?	
	b.	How will the bicarbonate buffer system respond to this change?	
	C.	What effect will the buffer system response have on the rate of respiration?	
	d.	If the buffer system does not return the blood pH to within the normal range or if the vomiting continues, how will the kidneys respond?	
		Will the kidneys excrete or reabsorb H+?	
		Will the kidneys excrete or reabsorb HCO ₃ ?	
End	of Chaj	pter Synthesis and Evaluation Problems	
	oblems	1-3, 5 and 16. Check and correct your answers to 1-3, 5	
2		***Question #16 needs to be typed out, then answered in no	
C41	C: 1	MSN (20 mainte)	

Study Guide/ISN (20 points)

In your study guide book, review pages 35-37. In your ISN, do the following: Title the page **Chapter 3 Water and Life Must Know!** In one color, copy down each of the must know items listed on page 34 in study guide leaving space underneath each to include in a different color a brief description, diagram, model or mnemonic device that will help you study for the unit test and more importantly the AP test in May.

Bozeman Science/Podcasts/ISN (See syllabus for format) (20 points)

- 1. Amoeba Sisters Properties of water
- 2. Bozeman Acids, Bases and pH.