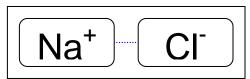
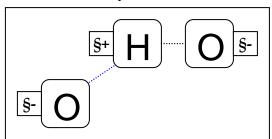


The Chemistry of Life (7%)

I. Bonds


- a. Covalent
 - i. Polar
 - 1. Between atoms that are conversely electronegative


- ii. Non Polar
 - 1. Between atoms that have electro-negativities that are either about the same or the same

- b. Ionic
- 1. Between atoms that have a full charge

- c. Hydrogen
 - 1. Hydrogen attached to an electronegative element (N, O) (Polar Covalent bond)
 - 2. Causes partial positive and partial negative charge
 - 3. Bond between second electronegative atom and H is the Hydrogen bond
 - 4. Found mainly between nucleic acid strands

II. pH

a. Scale

- b. Acidic
 - i. More H+
- c. Basic
 - i. More OH-
- d. Increments
 - **i.** 10x
 - 1. i.e. pH 3 is 10x more acidic than pH 4

III. Biomolecules

- a. Lipids
 - i. Mostly C-C and C-H bonds
 - ii. Fats
 - 1. Glycerol Backbone + Fatty Acid Tails
 - 2. Saturated: Solid at room temperature
 - a. i.e. butter
 - 3. Unsaturated: Liquid at room temperature
 - a. i.e. oil
 - iii. Steroids
 - 1. Carbon Rings + OH groups

b. Nucleic Acids

- i. Nucleotides
 - 1. Phosphate Group + Carbon Ring (Sugar) + Base
 - 2. Bases attracted by Hydrogen Bonds
 - a. A-T (2 H bonds)
 - b. C-G (3 H bonds)
 - c. A-U (2 H bonds)

c. Carbohydrates

- i. C-H-O Ratio is 1:2:1
- ii. Monosaccharides
 - 1. Glucose
 - 2. Galactose
 - 3. Fructose
- iii. Disaccharides
 - 1. Lactose → Glucose + Galactose (Hydrolysis)

2. Sucrose → Glucose + Fructose (Hydrolysis)

3. Maltose → Glucose + Glucose (Hydrolysis)

iv. Polysaccharides

Starch: Plant storage form
Glycogen: Animal storage form

3. Chitin: Exoskeleton of insects; fungal cell walls

4. Cellulose: Plant cell wall

d. Proteins

i. Amino Acids

1. R group + Central Carbon + Amino Group → Amino Acid

2. Amino Acid + Amino Acid → Dipeptide (Condensation)

3. Combinations

a. 1: Primary: Sequence of Amino Acids

b. 2: Secondary: Hydrogen Bonds

i. Alpha Helices

ii. Beta Sheets

c. 3: Tertiary: Interactions between R groups

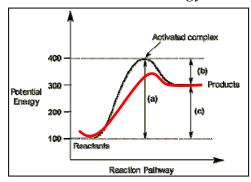
(3D)

i. Ionic Bonds

ii. Covalent Bonds

1. Disulfide Bonds

iii. Hydrogen Bonds


iv. Hydrophobic Interactions

d. 4: Quantanary: Interactions between polypeptide

chains

ii. Enzymes

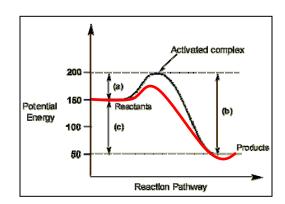
- 1. Accelerate rates of reactions (rxn)
- 2. Not destroyed in the reactions
- 3. Don't change overall energetics (ΔG)
- 4. Lower activation energy

Endothermic

Endothermic: Heat energy taken in from surroundings

→ turned into potential energy in the

products


Enthalpy: Products > Reactants

(a): The activation energy (Ea) for the

forward reaction

(b): The activation energy **(Ea)** for the

reverse reaction

Exothermic

Exothermic: Reactant's potential energy or enthalpy

is released into the surroundings,

usually in the form of heat

Enthalpy: Products < Reactants

(a): The activation energy (Ea) for the

forward reaction

(b): The activation energy **(Ea)** for the

reverse reaction

- 5. Effects and Alterations
 - a. pH
 - i. Affect hydrogen bonding between R groups
 - 1. Change structure
 - b. Temperature
 - i. Cold:
 - 1. Enzymes not as flexible
 - 2. Active site not able to mold around substrate
 - ii. Hot:
 - 1. Cause hydrogen bonds to break between R groups
 - 2. Denaturing
 - 3. *More collisions → not necessarily going to accelerate reaction