ECOLOGY (10%)

I. Ecosystems

a.	Autotrophs:	Utilize a chemical or light energy to synthesize
		organic compounds

- b. Heterotrophs: Need to eat other organisms to obtain organic molecules
- c. Trophic Levels:
 - i. Loss of energy
 - 1. Excretion
 - 2. Not everything is eaten
 - 3. Heat loss
 - ii. Loss of 90% at each level

d. Primary Productivity: Rate at which energy is stored in organic matters

e. Biomes:

- Communities
- i. Tropical Rainforest
 - 1. Huge amount of rainfall
 - 2. Most diverse in species
 - 3. Near the equator
 - 4. Lots of Decomposers
- ii. Tropical Savannah
 - 1. Not too much water
 - 2. Grasslands with scattered small trees
 - 3. i.e. Africa

2. Succulents:

- iii. Desert
 - 1. Very little water
- Plants that have strategies to minimize water Loss
- a. Thick cuticles on leaves
- b. Spines
- c. Closed stomates during the day
- iv. Temperate Forest
 - 1. Moderate amounts of water
 - 2. Moderate temperatures
 - 3. Forests and trees
- v. Temperate Shrubland
 - 1. Little or no summer rains
 - 2. Chaparrals: Shrubs
 - 3. Mainly Angiosperm shrubs
 - 4. i.e. Mediterranean region in Europe
- vi. Temperate Grassland
 - 1. Not too much moisture
 - 2. Can not support a forest
 - 3. i.e. Prairie/Midwest
- vii. Temperate Desert (Semi-desert/Scrubland)
 - 1. Sage brush
- viii. Taiga
 - 1. Extremely cold environments
 - 2. Heavy snowfall
 - 3. Conifers (Gymnosperms)
 - 4. i.e. Canada or Alaska
 - ix. Tundra
 - 1. Extremely cold environment
 - 2. Too cold or dry for trees
 - 3. Treeless
 - 4. i.e. Antarctica

- f. Aquatic Environments:
 - i. Lake
 - 1. Oligotrophic
 - a. Low in nutrients
 - b. Little plant life
 - c. Deep and steep shores
 - d. Small Littoral zone
 - i. Area on the shore where plants can grow
 - e. Overtime becomes Eutrophic
 - 2. Eutrophic
 - a. Rich in nutrients
 - b. More plant life
 - c. Shallower shores
 - d. Large Littoral zones
 - i. Area on the shore where plants can grow
 - e. Little dissolved O₂

II. Transformation of Communities

- a. Succession: Overtime, untouched land will become a community
 - i. Primary Succession
 - 1. No soil \rightarrow Growth \rightarrow New Community
 - ii. Secondary Succession
 - 1. Old Community → Forest Fire/Disaster → Growth → New Community

III. Carbon Cycle

- a. Atmosphere
 - i. Contains CO₂ gas
- b. Plants
 - i. Fix CO₂ gas from atmosphere into Organic Molecules
 - ii. Use CO₂ gas in Cellular Respiration
 - iii. Release CO₂ gas into Atmosphere
- c. Heterotrophs
 - i. Utilize Organic Molecules
 - ii. Release CO₂ gas into Atmosphere
- d. In Recent Times
 - i. CO_2 gas has increased in the atmosphere \rightarrow BAD

IV. Nitrogen Cycle

- a. Converts N_2 gas into usable form
- b. N_2 gas is needed in:
 - i. Amino Acids
 - ii. Nucleotides
 - iii. Nucleic Acids
- c. 70% of air is made up of N_2 gas
- d. Plants and Animals can \underline{not} use Nitrogen in the form of N_2 gas
- e. Cycle
 - i. Atmosphere
 - 1. N_2 gas
 - ii. Prokaryotes
 - 1. Convert N₂ gas into Ammonia (NH₃) or (NH₄⁺)
 - iii. Nitrifying Bacteria
 - Convert Ammonia (NH₃) or (NH₄⁺) into Nitrate (NO₂⁻) or Nitrite (NO₃⁻)
 - iv. Plants
 - 1. Use Nitrate (NO_2) and Nitrite (NO_3)
 - 2. Legumes
 - a. Mutualistic Symbiosis with Nitrifying Bacteria
 - i. Nitrifying Bacteria in the nodules in the roots
 - 1. Plant get usable Nitrogen from the Bacteria
 - 2. Bacteria get organic molecules from the plant
 - pi
 - v. Animals
 - 1. Consume Plants to obtain Nitrogen

V. Competition

a. Carrying Capacity:

Maximum number of organisms in a population that can be supported

- b. Factors that effect population growth
 - i. Density-dependent:

Factors affected by the density of the population

- 1. Food resources
- 2. Disease
- 3. etc.
- ii. Density-independent:

Factors unaffected by the density of the population

- 1. Natural disaster
- 2. Famine
- 3. etc.
- c. Competitive Exclusion Theory
 - i. Two different species will not occupy the same niche because the competition between them will be too intense